Fitxategi:Mach-Zehnder photons animation.gif
testwikitik
Nabigaziora joan
Bilaketara joan
Mach-Zehnder_photons_animation.gif (300 × 220 pixel, fitxategiaren tamaina: 110 KB, MIME mota: image/gif, kiribildua, 100 irudi, 7,0s)
Fitxategi hau Wikimedia Commons biltegikoa da, eta beste proiektu batzuetan erabil daiteke. Behean dago fitxategiaren deskribapeneko orria.
Laburpena
| DeskribapenaMach-Zehnder photons animation.gif |
English: Animation of photons in a Mach–Zehnder interferometer. In the empty interferometer each photon interferes with itself. If a detector is placed in the interferometer, the wavefunction will collapse so that the photon is either detected directly or it will move on and split at the second beam splitter without interference. |
| Data | |
| Jatorria | Norberak egina |
| Egilea | user:Geek3 |
| GIF genesis InfoField |
Source Code
The image is created by the following python source-code. Requirements:
- python
- Matplotlib plotting library
| Python Matplotlib source code |
|---|
#!/usr/bin/python
# -*- coding: utf8 -*-
from math import *
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon, Circle, Wedge
from matplotlib import animation
import numpy as np
# settings
fname = 'Mach-Zehnder_photons_animation'
width, height = 300, 220
nframes = 100
nphotons = 12
fps = 15
x0 = 100.5
x1 = 218.5
y0 = 200.5
y1 = 80.5
lx, lw, lh = 5, 46, 21 # laser
dtect = 62.5
t1, t2, tmove = 0.25, 0.9, 0.025
ymove = 24
rp = 2. # photon radius
cp1 = '#ff0000' # photon color
cp2 = '#ffaaaa' # splitphoton color
##
xstart = lx + lw / 2.
dx = x1 - x0
dy = y1 - y0
l = (x0 - xstart) + abs(dx) + abs(dy) + dtect + 2.*rp
xdet0 = (x0 + x1) / 2
fly_frac = 0.7
v = l / fly_frac
tdet0 = (xdet0 + 2.*rp - xstart) / v
tdet12 = l / v
# introduce artificial antibunching for illustration purpose
ptimes = (np.random.random() + np.sort(np.random.random(3*nphotons))[::3]) % 1
photons = [{} for i in range(nphotons)]
for i, p in enumerate(photons):
p['t0'] = ptimes[i]
if t1 <= (p['t0'] + tdet0) % 1 and (p['t0'] + tdet0) % 1 <= t2:
# photon sees first detector
if np.random.randint(2) == 0:
# photon hits extra detector
p['arm'] = 'none'
p['det'] = 0
else:
# photon escapes first detector
p['arm'] = 'lower'
# => random detection at second beam splitter
if np.random.randint(2) == 0:
p['det'] = 1
else:
p['det'] = 2
else:
# photon sees standard Mach-Zehnder interferometer
p['arm'] = 'both'
p['det'] = 1
if p['det'] == 0:
p['tdet'] = (p['t0'] + tdet0) % 1
else:
p['tdet'] = (p['t0'] + tdet12) % 1
p['click_frame'] = int(round(p['tdet'] * nframes)) % nframes
plt.close('all')
mpl.rc('path', snap=False)
def animate(nframe):
# prepare a clean and image-filling canvas for each frame
plt.clf()
fig.gca().set_position((0, 0, 1, 1))
plt.xlim(0, width)
plt.ylim(0, height)
plt.axis('off')
t = float(nframe) / nframes
# photons
for p in photons:
s0 = v * ((t - p['t0']) % 1)
if s0 > l:
continue
s = s0 + start - x0
if s <= 0:
# from laser to first beam splitter
x, y = x0 + s, y0
fig.gca().add_patch(Circle((x, y), rp, color=cp1))
elif s <= abs(dx) + abs(dy):
# in the interferometer
if s < abs(dx):
xu, yu = x0 + copysign(s, dx), y0
else:
xu, yu = x1, y0 + copysign(s - abs(dx), dy)
if s < abs(dy):
xd, yd = x0, y0 + copysign(s, dy)
else:
xd, yd = x0 + copysign(s - abs(dy), dx), y1
if s < xdet0 - x0 or p['arm'] == 'both':
fig.gca().add_patch(Circle((xu, yu), rp, color=cp2))
fig.gca().add_patch(Circle((xd, yd), rp, color=cp2))
elif p['arm'] == 'lower':
fig.gca().add_patch(Circle((xd, yd), rp, color=cp1))
else:
# after the interferometer
x, y = x1 + (s - abs(dx) - abs(dy)), y1
if p['arm'] == 'both':
fig.gca().add_patch(Circle((x, y), rp, color=cp1))
elif p['arm'] == 'lower':
fig.gca().add_patch(Circle((x, y), rp, color=cp2))
x, y = x1, y1 - (s - abs(dx) - abs(dy))
fig.gca().add_patch(Circle((x, y), rp, color=cp2))
# laser
fig.gca().add_patch(
Polygon([[lx, y0-lh/2.], [lx, y0+lh/2.],
[lx+lw, y0+lh/2.], [lx+lw, y0-lh/2.]],
closed=True, facecolor='#cccccc', edgecolor='black'))
plt.text(lx+lw/2., y0-2, 'laser', fontsize=12,
horizontalalignment='center', verticalalignment='center')
# beam splitters
b = 12
fig.gca().add_patch(
Polygon([[x0-b, y0+b], [x0+b, y0+b], [x0+b, y0-b],
[x0-b, y0-b], [x0-b, y0+b], [x0+b, y0-b]],
closed=True, facecolor='#88aadd', edgecolor='black',
linewidth=2, alpha=0.4))
fig.gca().add_patch(
Polygon([[x1-b, y1+b], [x1+b, y1+b], [x1+b, y1-b],
[x1-b, y1-b], [x1-b, y1+b], [x1+b, y1-b]],
closed=True, facecolor='#88aadd', edgecolor='black',
linewidth=2, alpha=0.4))
# mirrors
m, mw = 12, 4
fig.gca().add_patch(
Polygon([[x1-m+mw/2., y0+m+mw/2.], [x1+m+mw/2., y0-m+mw/2.]],
closed=False, edgecolor='#555555', linewidth=mw))
fig.gca().add_patch(
Polygon([[x0-m-mw/2., y1+m-mw/2.], [x0+m-mw/2., y1-m-mw/2.]],
closed=False, edgecolor='#555555', linewidth=mw))
# detectors
c_off = '#cccccc'
c_on = '#cc0000'
c0 = c1 = c2 = c_off
for p in photons:
if p['click_frame'] == nframe:
if p['det'] == 0: c0 = c_on
if p['det'] == 1: c1 = c_on
if p['det'] == 2: c2 = c_on
if t1 <= t and t <= t2:
yd = y0
else:
yd = y0 - min((t1-t)%1, tmove, (t-t2)%1) * ymove / float(tmove)
fig.gca().add_patch(mpl.patches.Wedge((xdet0, yd), b, 270, 90, fc=c0))
fig.gca().add_patch(mpl.patches.Wedge((x1 + dtect, y1), b, 270, 90, fc=c1))
fig.gca().add_patch(mpl.patches.Wedge((x1, y1 - dtect), b, 180, 0, fc=c2))
fig = plt.figure(figsize=(width/100., height/100.))
anim = animation.FuncAnimation(fig, animate, frames=nframes)
anim.save(fname + '.gif', writer='imagemagick', fps=fps)
|
Postprocessing with gifsicle:
gifsicle -k 64 --background="#ffffff" -O3 --careful -i < Mach-Zehnder_photons_animation.gif > Mach-Zehnder_photons_animation_.gif
Lizentzia
Nik, lan honen egileak, argitaratzen dut ondorengo lizentzia hauen pean:
| Baimena duzu dokumentu hau kopiatu, banatu edo/eta aldatzeko GNU Free Documentation License baldintzapean, Free Software Foundationek argitaratutako 1.2 edo ondorengo bertsioan; sekzio aldaezinik gabe, azaleko testurik gabe, eta atzeko azaleko testurik gabe. Lizentziaren kopia dago GNU Free Documentation License izenburudun atalean.http://www.gnu.org/copyleft/fdl.htmlGFDLGNU Free Documentation Licensetruetrue |
Fitxategi hau Creative Commons Aitortu 3.0 Unported lizentziaren mende dago.
- Askea zara:
- partekatzeko – lana kopiatzeko, banatzeko eta bidaltzeko
- birnahasteko – lana moldatzeko
- Ondorengo baldintzen pean:
- eskuduntza – Egiletza behar bezala aitortu behar duzu, lizentzia ikusteko esteka gehitu, eta ea aldaketak egin diren aipatu. Era egokian egin behar duzu hori guztia, baina inola ere ez egileak zure lana edo zure erabilera babesten duela irudikatuz.
Nahiago duzun lizentzia erabil dezakezu.
Irudi-oineko testuak
Add a one-line explanation of what this file represents
Animación 2D de fotones en un interferómetro Mach – Zehnder.
Fitxategi honetan agertzen diren itemak
honako hau irudikatzen du
22 abuztua 2015
media type ingelesa
image/gif
Fitxategiaren historia
Data/orduan klik egin fitxategiak orduan zuen itxura ikusteko.
| Data/Ordua | Iruditxoa | Neurriak | Erabiltzailea | Iruzkina | |
|---|---|---|---|---|---|
| oraingoa | 11:30, 22 abuztua 2015 | 300 × 220 (110 KB) | wikimediacommons>Geek3 | {{Information |Description ={{en|1=Animation of photons in a en:Mach–Zehnder interferometer. In the empty interferometer each photon interferes with itself. If a detector is placed in the... |
Fitxategiaren erabilera
Fitxategi hau darabil ondorengo orri honek:
