Bigarren motako Stirling zenbaki
Nabigaziora joan
Bilaketara joan
Konbinatorian, bigarren motako Stirling zenbakia n elementuko multzo bat k azpimultzotan zatitzeko era kopurua da. Honela izendatu eta kalkulatzen da:
Konbinatorian lehen motako Stirling zenbakiak ere badaude, permutazioen azterketan eraibltzen direnak.
n eta k balio zenbaitetarako, bigarren motako Stirling zenbakien taula da honako hau:
| n \ k | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 0 | 1 | |||||||||
| 1 | 0 | 1 | ||||||||
| 2 | 0 | 1 | 1 | |||||||
| 3 | 0 | 1 | 3 | 1 | ||||||
| 4 | 0 | 1 | 7 | 6 | 1 | |||||
| 5 | 0 | 1 | 15 | 25 | 10 | 1 | ||||
| 6 | 0 | 1 | 31 | 90 | 65 | 15 | 1 | |||
| 7 | 0 | 1 | 63 | 301 | 350 | 140 | 21 | 1 | ||
| 8 | 0 | 1 | 127 | 966 | 1701 | 1050 | 266 | 28 | 1 | |
| 9 | 0 | 1 | 255 | 3025 | 7770 | 6951 | 2646 | 462 | 36 | 1 |
Adibidez n=3 elementuko {a, b, c} multzoa k=2 azpimultzotan 3 eratara zatitu daiteke: a-bc, b-ac, c-ab.