Zerrenda:Funtzio arrazionalen integralak

testwikitik
Nabigaziora joan Bilaketara joan

Ondorengoa funtzio arrazionalen integralen zerrenda bat da (jatorrizkoak edo antideribatuak). Integralen zerrenda osatuago nahi baduzu, ikusi integralen zerrenda.

(ax+b)ndx=(ax+b)n+1a(n+1)+Kn1)
cax+bdx=caln|ax+b|+K
x(ax+b)ndx=a(n+1)xba2(n+1)(n+2)(ax+b)n+1+Kn∉{1,2})


xax+bdx=xaba2ln|ax+b|+K
x(ax+b)2dx=ba2(ax+b)+1a2ln|ax+b|+K
x(ax+b)ndx=a(1n)xba2(n1)(n2)(ax+b)n1+Kn∉{1,2})


f(x)f(x)dx=ln|f(x)|+K


x2ax+bdx=b2ln(|ax+b|)a3+ax22bx2a2+K
x2(ax+b)2dx=1a3(ax2bln|ax+b|b2ax+b)+K
x2(ax+b)3dx=1a3(ln|ax+b|+2bax+bb22(ax+b)2)+K
x2(ax+b)ndx=1a3((ax+b)3n(n3)+2b(ax+b)2n(n2)b2(ax+b)1n(n1))+Kn∉{1,2,3})


1x(ax+b)dx=1bln|ax+bx|+K
1x2(ax+b)dx=1bx+ab2ln|ax+bx|+K
1x2(ax+b)2dx=a(1b2(ax+b)+1ab2x2b3ln|ax+bx|)+K
1x2+a2dx=1aarctanxa+K
1x2a2dx={1aarctanhxa=12alnaxa+x+K(for |x|<|a|)1aarccothxa=12alnxax+a+K|x|>|a|)


a0 bada:

1ax2+bx+cdx={24acb2arctan2ax+b4acb2+K4acb2>0)2b24acarctanh2ax+bb24ac+K=1b24acln|2ax+bb24ac2ax+b+b24ac|+K4acb2<0)22ax+b+K4acb2=0)


xax2+bx+cdx=12aln|ax2+bx+c|b2adxax2+bx+c


mx+nax2+bx+cdx={m2aln|ax2+bx+c|+2anbma4acb2arctan2ax+b4acb2+K4acb2>0)m2aln|ax2+bx+c|2anbmab24acarctanh2ax+bb24ac+K4acb2<0)m2aln|ax2+bx+c|2anbma(2ax+b)+K4acb2=0)


1(ax2+bx+c)ndx=2ax+b(n1)(4acb2)(ax2+bx+c)n1+(2n3)2a(n1)(4acb2)1(ax2+bx+c)n1dx
x(ax2+bx+c)ndx=bx+2c(n1)(4acb2)(ax2+bx+c)n1b(2n3)(n1)(4acb2)1(ax2+bx+c)n1dx
1x(ax2+bx+c)dx=12cln|x2ax2+bx+c|b2c1ax2+bx+cdx


dxx2n+1=k=12n1{12n1[sin((2k1)π2n)arctan[(xcos((2k1)π2n))csc((2k1)π2n)]]12n[cos((2k1)π2n)ln|x22xcos((2k1)π2n)+1|]}

Edozein funtzio arrazional integra dezakegu goiko berdintzak erabiliz eta zatiki arrazionalen integrazioaren artikuluan eskaintzen diren teknikak aplikatuz, funtzio arrazionalak ondorengo formako batugaietan banatzearen bidez:

ex+f(ax2+bx+c)n.