Zerrenda:Funtzio irrazionalen integralak

testwikitik
Nabigaziora joan Bilaketara joan

Ondorengoa funtzio irrazionalen integralen zerrenda bat da (jatorrizkoak edo antideribatuak). Integralen zerrenda osatuago nahi baduzu, ikusi integralen zerrenda.

Bere barnean (x² +a²)-ren erroa daukaten funtzioen integralak r=x2+a2

rdx=12(xr+a2ln(x+r))+K
r3dx=14xr3+183a2xr+38a4ln(x+r)+K
r5dx=16xr5+524a2xr3+516a4xr+516a6ln(x+r)+K
xrdx=r33+K
xr3dx=r55+K
xr2n+1dx=r2n+32n+3+K
x2rdx=xr34a2xr8a48ln(x+r)+K
x2r3dx=xr56a2xr324a4xr16a616ln(x+r)+K
x3rdx=r55a2r33+K
x3r3dx=r77a2r55+K
x3r2n+1dx=r2n+52n+5a3r2n+32n+3+K
x4rdx=x3r36a2xr38+a4xr16+a616ln(x+r)+K
x4r3dx=x3r58a2xr516+a4xr364+3a6xr128+3a8128ln(x+r)+K
x5rdx=r772a2r55+a4r33+K
x5r3dx=r992a2r77+a4r55+K
x5r2n+1dx=r2n+72n+72a2r2n+52n+5+a4r2n+32n+3+K
rdxx=raln|a+rx|=rasinh1ax+K
r3dxx=r33+a2ra3ln|a+rx|+K
r5dxx=r55+a2r33+a4ra5ln|a+rx|+K
r7dxx=r77+a2r55+a4r33+a6ra7ln|a+rx|+K
dxr=sinh1xa=ln|x+r|+K
dxr3=xa2r+K
xdxr=r+K
xdxr3=1r+K
x2dxr=x2ra22sinh1xa=x2ra22ln|x+r|+K
dxxr=1asinh1ax=1aln|a+rx|+K

Bere barnean (x² -a²)-ren erroa daukaten funtzioen integralak s=x2a2

Kasu honetan (x2>a2) izan behar da, bestela (x2<a2) bada, begiratu hurrengo atala.

xsdx=13s3+K
sdxx=sacos1|ax|+K
dxs=dxx2a2=ln|x+sa|+K

Kontuan hartu behar dugu ln|x+sa|=sgn(x)cosh1|xa|=12ln(x+sxs) dela, non cosh1|xa|-ren balio positiboa hartzen den.

xdxs=s+K
xdxs3=1s+K
xdxs5=13s3+K
xdxs7=15s5+K
xdxs2n+1=1(2n1)s2n1+K
x2mdxs2n+1=12n1x2m1s2n1+2m12n1x2m2dxs2n1
x2dxs=xs2+a22ln|x+sa|+K
x2dxs3=xs+ln|x+sa|+K
x4dxs=x3s4+38a2xs+38a4ln|x+sa|+K
x4dxs3=xs2a2xs+32a2ln|x+sa|+K
x4dxs5=xs13x3s3+ln|x+sa|+K
x2mdxs2n+1=(1)nm1a2(nm)i=0nm112(m+i)+1(nm1i)x2(m+i)+1s2(m+i)+1+K(n>m0)
dxs3=1a2xs+K
dxs5=1a4[xs13x3s3]+K
dxs7=1a6[xs23x3s3+15x5s5]+K
dxs9=1a8[xs33x3s3+35x5s517x7s7]+K
x2dxs5=1a2x33s3+K
x2dxs7=1a4[13x3s315x5s5]+K
x2dxs9=1a6[13x3s325x5s5+17x7s7]+K

Bere barnean (a²-x²)-ren erroa daukaten funtzioen integralak u=a2x2

udx=12(xu+a2arcsinxa)+K(|x||a|)
xudx=13u3+K(|x||a|)
udxx=ualn|a+ux|+K(|x||a|)
dxu=arcsinxa+K(|x||a|)
x2dxu=12(xu+a2arcsinxa)+K(|x||a|)
udx=12(xusgnxcosh1|xa|)+K|x||a|)

Bere barnean (ax²+bx+c)-ren erroa daukaten funtzioen integralak R=ax2+bx+c

dxR=1aln|2aR+2ax+b|+Ka>0)
dxR=1asinh12ax+b4acb2+Ka>04acb2>0)
dxR=1aln|2ax+b|+Ka>04acb2=0)
dxR=1aarcsin2ax+bb24ac+Ka<04acb2<0|2ax+b|<b24ac)
dxR3=4ax+2b(4acb2)R+K
dxR5=4ax+2b3(4acb2)R(1R2+8a4acb2)+K
dxR2n+1=2(2n1)(4acb2)(2ax+bR2n1+4a(n1)dxR2n1)
xRdx=Rab2adxR
xR3dx=2bx+4c(4acb2)R+K
xR2n+1dx=1(2n1)aR2n1b2adxR2n+1
dxxR=1cln(2cR+bx+2cx)+K
dxxR=1csinh1(bx+2c|x|4acb2)+K

Bere barnean (ax+b)-ren erroa daukaten funtzioen integralak S=ax+b

dxax+b=2ax+ba+K
dxxax+b=2btanh1ax+bb+K
ax+bxdx=2(ax+bbtanh1ax+bb)+K
xnax+bdx=2a(2n+1)(xnax+bbnxn1ax+bdx)
xnax+bdx=22n+1(xn+1ax+b+bxnax+bnbxn1ax+bdx)

Bibliografia

  • Txantiloi:Erreferentzia
  • Milton Abramowitz & Irene A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables 1972, Dover: New York. (Ikusi: capítol 3.)