Zerrenda:Funtzio hiperbolikoen integralak

testwikitik
Nabigaziora joan Bilaketara joan

Ondorengoa funtzio hiperbolikoen integralen zerrenda bat da (jatorrizkoak edo antideribatuak). Integralen zerrenda osatuago nahi baduzu, ikusi integralen zerrenda.

K erabiltzen da integrazio-konstante gisa. Konstante hori zehaztu daiteke soilik integralaren balioa ezaguna baldin bada puntu batean. Horrela, funtzio bakoitzak jatorrizkoen kopuru infinitua dauka.

sinhaxdx=1acoshax+K
coshaxdx=1asinhax+K
sinh2axdx=14asinh2axx2+K
cosh2axdx=14asinh2ax+x2+K
tanh2axdx=xtanhaxa+K
sinhnaxdx=1ansinhn1axcoshaxn1nsinhn2axdxn>0)
baita hau ere: sinhnaxdx=1a(n+1)sinhn+1axcoshaxn+2n+1sinhn+2axdxn<0n1)
coshnaxdx=1ansinhaxcoshn1ax+n1ncoshn2axdxn>0)
baita hau ere: coshnaxdx=1a(n+1)sinhaxcoshn+1axn+2n+1coshn+2axdxn<0n1)
dxsinhax=1aln|tanhax2|+K
baita hau ere: dxsinhax=1aln|coshax1sinhax|+K
baita hau ere: dxsinhax=1aln|sinhaxcoshax+1|+K
baita hau ere: dxsinhax=1aln|coshax1coshax+1|+K
dxcoshax=2aarctaneax+K
dxsinhnax=coshaxa(n1)sinhn1axn2n1dxsinhn2axn1)
dxcoshnax=sinhaxa(n1)coshn1ax+n2n1dxcoshn2axn1)
coshnaxsinhmaxdx=coshn1axa(nm)sinhm1ax+n1nmcoshn2axsinhmaxdxmn)
baita hau ere: coshnaxsinhmaxdx=coshn+1axa(m1)sinhm1ax+nm+2m1coshnaxsinhm2axdxm1)
baita hau ere: coshnaxsinhmaxdx=coshn1axa(m1)sinhm1ax+n1m1coshn2axsinhm2axdxm1)
sinhmaxcoshnaxdx=sinhm1axa(mn)coshn1ax+m1nmsinhm2axcoshnaxdxmn)
baita hau ere: sinhmaxcoshnaxdx=sinhm+1axa(n1)coshn1ax+mn+2n1sinhmaxcoshn2axdxn1)
baita hau ere: sinhmaxcoshnaxdx=sinhm1axa(n1)coshn1ax+m1n1sinhm2axcoshn2axdxn1)
xsinhaxdx=1axcoshax1a2sinhax+K
xcoshaxdx=1axsinhax1a2coshax+K
x2coshaxdx=2xcoshaxa2+(x2a+2a3)sinhax+K
tanhaxdx=1aln|coshax|+K
cothaxdx=1aln|sinhax|+K
tanhnaxdx=1a(n1)tanhn1ax+tanhn2axdxn1)
cothnaxdx=1a(n1)cothn1ax+cothn2axdxn1)
sinhaxsinhbxdx=1a2b2(asinhbxcoshaxbcoshbxsinhax)+Ka2b2)
coshaxcoshbxdx=1a2b2(asinhaxcoshbxbsinhbxcoshax)+Ka2b2)
coshaxsinhbxdx=1a2b2(asinhaxsinhbxbcoshaxcoshbx)+Ka2b2)
sinh(ax+b)sin(cx+d)dx=aa2+c2cosh(ax+b)sin(cx+d)ca2+c2sinh(ax+b)cos(cx+d)+K
sinh(ax+b)cos(cx+d)dx=aa2+c2cosh(ax+b)cos(cx+d)+ca2+c2sinh(ax+b)sin(cx+d)+K
cosh(ax+b)sin(cx+d)dx=aa2+c2sinh(ax+b)sin(cx+d)ca2+c2cosh(ax+b)cos(cx+d)+K
cosh(ax+b)cos(cx+d)dx=aa2+c2sinh(ax+b)cos(cx+d)+ca2+c2cosh(ax+b)sin(cx+d)+K